
1. Review of Modular Square Roots
The main issues of modular square roots are apparent in this multiplication table:

Table 1.1. The Multiplication Table for p = 17

· 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 2 4 6 8 10 12 14 16 1 3 5 7 9 11 13 15

0 3 6 9 12 15 1 4 7 10 13 16 2 5 8 11 14

0 4 8 12 16 3 7 11 15 2 6 10 14 1 5 9 13

0 5 10 15 3 8 13 1 6 11 16 4 9 14 2 7 12

0 6 12 1 7 13 2 8 14 3 9 15 4 10 16 5 11

0 7 14 4 11 1 8 15 5 12 2 9 16 6 13 3 10

0 8 16 7 15 6 14 5 13 4 12 3 11 2 10 1 9

0 9 1 10 2 11 3 12 4 13 5 14 6 15 7 16 8

0 10 3 13 6 16 9 2 12 5 15 8 1 11 4 14 7

0 11 5 16 10 4 15 9 3 14 8 2 13 7 1 12 6

0 12 7 2 14 9 4 16 11 6 1 13 8 3 15 10 5

0 13 9 5 1 14 10 6 2 15 11 7 3 16 12 8 4

0 14 11 8 5 2 16 13 10 7 4 1 15 12 9 6 3

0 15 13 11 9 7 5 3 1 16 14 12 10 8 6 4 2

0 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

The most important thing to note is the main diagonal, which shows the square of each
residue: the product of each residue by itself. I marked those in orange to help them stand
out. The distinct residues on that diagonal are 0, 1, 2, 4, 8, 9, 13, 15, and 16 (which can
also be written as 0, ±1, ±2, ±4, and ±8). They include the residue 0 and only half of the
16 nonzero residues: The so-called “QR (quadratic residues)”, the ones that possess
square roots.

Modular Square Roots ! 1 of 10

! ModularSquareRoots.pages

In general, for p-values that are odd primes, the number of quadratic residues is (p - 1)/2.
The count makes good sense, since each nonzero residue that has a square root—called
QRs (Quadratic Residues)—has two distinct square roots so the QRs show up twice on
that main diagonal. Euler penned a result that lets you predict which residues are QRs,
without having to draw up the whole table:
Euler’s Criterion: Let p be an odd prime. The congruence

! ! ! ! x2 ≡ a (mod p)
is trivially solvable if a is a multiple of p. If p does not divide a then the congruence is
solvable or not, i.e. a is QR or not, according as

! ! ! ! a(p-1)/2 ≡ 1 or -1 (mod p)

This ties in with a concept called the Legendre Symbol, denoted by (a | p) and defined to
equal +1 or -1 according as the congruence x2 ≡ a (mod p) is non-trivially solvable or not.
(a | p) is 0 in the trivial case. After Euler discovered his result, it became an efficient
computational way to evaluate the Legendre Symbol, and is used that way to the present
day.

These results and many others owe their discovery to the most important of all results in
residue theory:

Theorem (Euler): If a and m are positive integers with GCD(a, m) = 1, i.e. a and m have
no factors in common, then

Equation 1.! ! ! aφ(m) ≡ 1 (mod m)

where φ(m) is called “the Euler Phi Function”, defined for all positive integers m. A bit
involved to calculate when m is not a prime number, it is easy when m is prime in which
case φ(m) is simply m - 1. Letting p be any prime integer we have:

Corollary: ap ≡ a (mod p)

Corollary: ap-1 ≡ 1 (mod p)

Corollary: ap-2 ≡ 1/a (mod p) [one of the best ways to calculate reciprocals mod p]

If the modulus m is large, then am can be astronomical in size even if a is modest. Luckily
it was discovered early on that, by doing the reduction mod m as you go, you never need

to work with numbers larger than m2. Another immense efficiency was discovered: am for
any positive integer can be calculated as a product of a small collection of squarings, viz.
a, a2, (a2)2, ... etc. For example, am with m being the largest number natural to a 32-bit
computer such as an iPhone, can be calculated with at most 61 multiplications. And, by
doing the reduction mod m after each multiplication, you never need more than double-
precision (64-bit for the iPhone) arithmetic. You can imagine the savings in effort that

Modular Square Roots ! 2 of 10

! ModularSquareRoots.pages

Euler, Legendre, Cauchy, and all gained. I think Newton would have plundered the mint
for such facility!

That’s pretty much the way things stood until the 20th century: There was still no good
way to determine the actual values of square roots, even after the Euler-Legendre result
let us know which residues have square roots. To appreciate this pathetic state of affairs,
the first method I incorporated into the Frrraction iPhone app, before I found the work of
Cipolla and Pocklington, had to be a brute-force search: Given an odd prime p and a
residue a with (a | p) = +1, it simply generated all integers from 1 to the integer square
root of p—a value quite easily computed—and stopped when it found one whose square
(mod p) was equal to the given a. It was perfectly satisfactory for square-root values up
to the tens of millions, but became annoyingly slow for larger results—and you never
know ahead of time how big the result might be, only that it won’t exceed m. Example:
The square root of 18 (mod 2,147,483,647) is 2,147,287,039. I hadn’t expected such a
huge result and it took a long time using my early Frrraction algorithm, but no time at all
using Podlington Case 1 —when implemented using the powers-of-powers-of-2 trick— on
the same iThing!
Effective Square-Root Algorithms
Since 1900 a number of decent square-root algorithms have been discovered. The
simplest ones are restricted to special cases. Three of my favorite are these:
Pocklington Case 1: If p is an odd prime with p ≡ 3 (mod 4) and r is QR, then the square
root of r is ±r(p + 1)/4.
Pocklington Case 2a: If p is an odd prime with p ≡ 5 (mod 8), r is QR, and r(p - 1)/4 ≡ 1,
then the square root of r is ±r(p + 3)/8.
Pocklington Case 2b: If p is an odd prime with p ≡ 5 (mod 8), r is QR, and r(p - 1)/4 ≡ -1,
then let s ≡ (4r)(p + 3)/8. The square root of r is ±1/2·s or, if s is odd, then the square root
of r is ±1/2·(s + p).
That’s as far as I go with Pocklington. His Case 3 seems far more baroque than the
perfectly general one I prefer:
The Cipolla Algorithm: If p is an odd prime and r is QR, then the square roots of r are

given by ± a + 2a − r()(p +1) / 2where a is chosen to be any residue (mod p) for

which a2 - r is QNR.

The parameter a is an artifact—a mathematical catalyst, really. It is essential to the
method but due to Cipolla’s insightful definition it does not appear in the final result. In
practice it is not unique. Some choices of a produce one the square roots of r, others
produce the other square root.

Modular Square Roots ! 3 of 10

! ModularSquareRoots.pages

2. Introduction to Imaginary Modular Square Roots
As we saw in Section 1, computing square roots of quadratic residues was not exactly
straight-forward, so we might expect matters to be even more interesting when we turn to
quadratic nonresidues−since they are the residues traditionally considered to not possess
square roots. This puts residues Zm where the integers Z were, back in the days before
the complex field c and i = √-1, when negative numbers had no square roots.
For a quick start, Table 2.1 is a complete square root table for residues mod 17. On the
righthand side of the table are the familiar square roots for the quadratic residues 1, 2, 4,
8, -8≡9, -4≡13, -2≡15, and -1≡16. The lefthand side shows all the square roots for the
quadratic nonresidues.
The QR side of the table is easier to use. To find the square root of a quadratic residue,
find it in the header row, and look down to the ±m row to see its two square roots. For
example, the square roots of 8 are 5 and -5.

Table 2.1.
QNR Square Root Table for mod p=17 QR Square Root Table for mod p=17

p=
17 √3 √5 √6 √7 √-7 √-6 √-5 √-3 p=

17 √1 √2 √4 √8 √-8 √-4 √-2 √-1

√3

√5

√6

√7

√-7

√-6

√-5

√-3

±1 ±8 ±6 ±5 ±3 ±7 ±2 ±4 1 ±1 ±6 ±2 ±5 ±3 ±8 ±7 ±4

±2 ±1 ±5 ±7 ±6 ±3 ±4 ±8

±3 ±7 ±1 ±2 ±8 ±4 ±6 ±5

±7 ±5 ±8 ±1 ±4 ±2 ±3 ±6

±6 ±3 ±2 ±4 ±1 ±8 ±5 ±7

±5 ±6 ±4 ±8 ±2 ±1 ±7 ±3

±8 ±4 ±3 ±6 ±7 ±5 ±1 ±2

±4 ±2 ±7 ±3 ±5 ±6 ±8 ±1

The QNR side of the table works the same as the QR side, with the added complication
that the header column has (p - 1)/2 different entries, not just the simple single entry 1. To
find the square root of a quadratic nonresidue, locate it in the header row of the lefthand
table, then look down that column to your choice of a row−any choice is as good as any
other. Note the two residues ±m shown in that entry. Then look over to the left at the
header column for that row; it gives the imaginary multiplier v. The desired square root is
the product ±m times v. For example, one of the forms for the two square roots of 7 is
±5·√3. This is easily confirmed by squaring the proposed square root:

Modular Square Roots ! 4 of 10

! ModularSquareRoots.pages

 (±5 3)2 ≡ 25 i 3≡ 8 i 3≡ 24 ≡ 7 (mod17)

See? just as we set out to find: √7 is ±5·√3. Somewhat disconcertingly, √7 is also ±2·√6
and ±6·√-5 to mention just a few of the alternative expressions provided by Table 2.1.
The “disconcerting ambiguity”
The resolution of that ambiguity is quite easy but first, let’s see it in the familiar case of
ordinary complex numbers, c. Did you ever wonder why the imaginary unit i turned out to

be √-1 instead of, say, √-𝜋 or √-49 or the square root of any other negative number?

Neither did I, and nobody ever mentioned it to me even in graduate school. (I did used to
tease my graduate students by saying, “Sure, you know that i is a square root of -1, but
all numbers have two square roots. Do you know which of the two i is?” Logically, Euler or

Cauchy or whoever could just have well have chosen i to be √-𝜋 or whatever−all the
alternatives are interchangeable as simple real multiples of each other. √-49 for instance
is just 7·√-1 or -7·√-1, no big deal in either case−and we now know that it doesn’t even
matter whether we use the +7 or the -7. The only cost would have been the practical
inconvenience of having accept a scaled version of the imaginary axis of the complex
plane, carrying along a non-unity scale factor that in most cases wouldn’t even be
expressible by a finite number of digits. Some choices wouldn’t have been so bad: √-4 for
example, since √-4 is 2·√-1 or -2·√-1. Of course, circularly polarized electromagnetic
fields would then be elliptically polarized. And wherever i shows up in a complex
expression, we would have to replace it by 0.5·inew by -0.5·inew. Awkward, but not
illogical.

Returning now to the residue field Zp . As with all those alternatives for c, there are
alternative imaginary units for Zp: Eight of them in the case of Z17 : √3, √5, √7, etc., and
(p-1)/2 of them for Zp when p is an odd prime. As in the discussion of multiples of i they
are not independent of each other. They are all just the offspring of a single imaginary
principle−carriers of that one principle, if you will. We could choose any one of those
carriers, √3 for example, and eliminate all the rest as multiples of the chosen one: Thus,

2·√5 ≡ 3·√6 ≡ 7·√7 ≡ 6·√-7 ≡ 5·√-6 ≡ 8·√-5 ≡ 4·√-3 ≡ √3 (mod 17)

The same could be done just as well with any of them. For a second example, multiply all
those congruences through by the reciprocal of 2 to express all of them as multiples of √5:

2-1·2·√5 ≡ 2-1·3·√6 ≡ 2-1·7·√7 ≡ 2-1·6·√-7 ≡ ... ≡ 2-1·√3 ≡ √5 (mod 17)

All residues of odd primes are units (have reciprocals), and 17 is an odd prime, so such
expressions can be derived from Table 2.1 for any of the entries of the first column, and
they all reduce with a little arithmetic to the form ±m·v. SInce 2-1 ≡ 9 (mod 17) the above
alternative forms of √5 are:

1·√5 ≡ -7·√6 ≡ -5·√7 ≡ 3·√-7 ≡ ... ≡ 9·√3 ≡ √5 (mod 17)

Modular Square Roots ! 5 of 10

! ModularSquareRoots.pages

Of course, these congruences are more easily confirmed than derived. For example, is
-7·√6 truly congruent to √5? Square both sides and compare: (-7·√6)2 ≡ 49·6 ≡ 5 ≡
(√5)2 (mod 17). Truly.

Why isn’t √-1 among the choices for the imaginary carrier v?

Sometimes it is, sometimes it isn’t. It all depends upon the modulus p. Remember: The
discriminator between residues that have square roots and those that don’t is the property
of being a QR (quadratic residue) or a QNR (quadratic nonresidue), not the algebraic ±
sign. The Legendre Symbol (a|p), computable as

p−1
2(a|p)=a (mod p) for odd prime p

tells which kind a is. If a ≠ 0 then the only values (a|p) takes on are +1 and -1. If +1 then a
is QR, otherwise it is QNR.

The square w of the imaginary carrier v must be QNR (or else v ≡ √w would be a normal
residue, not an imaginary residue). So what about -1? Easy to answer: -1 raised to an
even power is +1. And -1 raised to an odd power is -1. The question becomes: Is half of
p - 1 even or odd? If even, then:

p −1
2

= 2k for some integer k, so

p = 4k +1 for some integer k, so
p ≡ 1 (mod 4)

Neat, eh? How does p = 17 measure up? Well, 17/4 is 4+1/4, so 17 ≡ 1 (mod 4). What’s
the conclusion? As a residue class for p = 17, -1 is QR, so √-1 does not carry the
imaginary principle for p = 17.

The other values for any integer mod 4 are 0, 2 and 3. p must be odd, so 0 and 2 are
ruled out, leaving values of p congruent to 3 (mod 4) as the the moduli that offer √-1 as a
choice for the imaginary carrier v.

p ≡ 3 (mod 4) if and only if p ≡ 4k + 3 for some integer k.

The first few of those values are 3, 7, 11, 15, 19, 23, etc. 15 is out, because it’s not prime.
11 is a nice little number, let’s look at Table 2.2, the p=11 version of Table 2.1.

Sure enough, -1 is QNR in Z11, so v = √-1 is a valid choice. Another ready observation is
that, like the integers Z and the reals R, Z11 comes close to using algebraic sign to
distinguish between QR and QNR: If residue class r is QR the -r is QNR, and vice versa.
That’s quite the opposite of Z17 where if r was QR then so was -r, and vice versa.

The way I determine which r-values to use for the headers of tables like Table 2.1 and
Table 2.2 is to evaluate the Legendre Symbol for each residue class, one by one, and
choose the r-values whose (r|p) is -1.

Modular Square Roots ! 6 of 10

! ModularSquareRoots.pages

Filling in the diagonal entries is always as easy as noting that √r = √r. The off-diagonals
call for a bit more effort.

Table 2.2. QNR Square Roots

p=
11

√2 √6 √-4 √-3 √-1

√2

√6

√-4

√-3

√-1

1 ±3

1

1

1

±9 1

Calculating √r for QNR values of r
I got this whole imaginary residues idea from that Wikipedia presentation of Cipolla’s
Algorithm. As its amazing first step towards finding square roots of a QR residue r, it
hunts until it stumbles upon a residue a such that a2 - r is QNR. I adapted this to the goal
of this section by seeking a QNR a-value such that A = a + r is QR, with the idea that v =
√a would then happily carry the imaginary principle. Following Cipolla, we plan to compute
x0 :

(p +1) / 2
0x = r + a + a() = (p +1) / 2

A + v()
letting A = √(r + a). Continuing along the trail that was formed in 1907:

2x0 =
p+1

A+v() = A + v() pA + v()
but in any pZ it is true that px + y() = px + py .

Moreover, by Legendre, px = x if x is QR,
and px = −x if y is QNR so

pA + v() = A − v and

A + v() pA + v() = A + v() A − v() = 2A − 2v .

Bingo. 2x0 = (r + a)− a = r

Modular Square Roots ! 7 of 10

! ModularSquareRoots.pages

So the x0 we compute from x0 = (A + v)(p+1)/2 is the desired imaginary square root of r.

For example, let’s compute the entry of Table 2.2 for r = -4 (same as 7 (mod 11)). To start,
we need a QNR value for a such that r + a is QR. The following little table, obtained by
liberal use of the Legendre Symbol to know which Z11 residues are QR and which are
not, shows the possibilities:

Table 2.3. Possibilities for a

a = v2a = v2 r +a = A2r +a = A2

2 QNR 9 QR

6 QNR 2 QNR

7 QNR 3 QR

8 QNR 4 QR

10 QNR 6 QNR

a = 6 and a = 10 are ruled out. a = 7 is the trivial case √-4 = ±1·√-4, so let’s go with a = 2
for this first example. After calculating the square root A = √(r + a) = √9 ≡ 3 , the

Modular Square Roots ! 8 of 10

! ModularSquareRoots.pages

calculation of x0 goes like this:
Table 2.4. Calculation of √-4 (mod 11)

(A + v)n with v = √2(A + v)n with v = √2(A + v)n with v = √2

(3 + v)1 ≡ 3 + 1·v

(3 + v)2 ≡ 0 + 6·v

(3 + v)4 ≡ 6+ 0·v

x0 ≡ (3 + v)6 ≡ 0 + 3·v =
√-4 = √7

[Hint: Calculate (a + bv)·(c + dv) as you would if v were i, except v2 is 2 instead of -1.]

▣

We noted above that the QNRs 6 and 10 were ruled out of the running for v2 because the
corresponding values of r + a were also QNR. This is a shortcoming of this method for
calculating imaginary square roots, not a shortcoming of v = √6 or √10 as “carriers of the
imaginary principle”. In fact, the square roots of all QNRs are simple real multiples of each
other and can therefore be freely substituted for one another. For instance, consider:

2 = a −1⇔ 2a = 2
−1

⇔ a = 3. So, from the Table 2.4 result √7 ≡ 3√2 we see that an

alternate expression is √7 ≡ 3·3√-1 ≡ 9√-1 (mod 11), a result easily verified by squaring
both sides. The congruence √v ≡ m·√w (mod p) always yields a QR value for m when v
and w are both QNR, so this observation provides the next section.

A simpler method for calculating √r for QNR values of r
Every entry of an imaginary square root table like Table 2.1 is just another congruence
equation of the form

Equation 2.1.! ! ! √r ≡ m·√v ⇒ m = √(v/r)

where √r is a column header and √v is a row header, to be solved for m, given r and v. If
m is a solution, then so too is -m., which accounts for both solutions expected of a
quadratic residue equation.

As examples, we complete the bottom row of Table 2.2 by taking v to be -1 (same as 10)
and r to be 2, 6, and -3 (same as 8), yielding m = 3, 4, and 5, respectively:

Table 2.5 last row.

p =
11 √2 √6 √r √-3 √-1

√-1 ±3 ±4 ±m ±5 ±1

Modular Square Roots ! 9 of 10

! ModularSquareRoots.pages

In these cases of p ≡ 3 (mod 4), where the imaginary carrier can be the square root of -1,
it’s hard to resist the temptation to use the symbol i instead of v for the imaginary unit.

▣

Modular Square Roots ! 10 of 10

! ModularSquareRoots.pages

