
A Numeric Mystery!
One way to simplify a decimal number x (e.g. 23.456) is to discard all but n digits (e.g. 3 digits),
keeping only the most significant nonzero digit and the following n-1 digits (e.g. 23.456 simplifies that
way to 23.5). As a text-editing task, this is quite easy to do. As a numeric task it’s trickier.

Here’s a way to do it numerically, without ever seeing the text form of the numbers: Start by converting
x to a “normalized” form, whose highest non-zero digit occurs immediately after the decimal point (e.g
23.456 normalizes to 0.23456). To accomplish this — without looking — we can use the number ilx
computed as follows:

Start by creating the normalized form of x:
1. Compute the integer part ilx of log10(x) (e.g. ilx = int(log10(23.456)) = int(1.37025) = 1)
2. If ilx >= 0 then add 1 to it (e.g. ilx becomes 2)
3. Raise 10 to the power ilx (e.g. 102 = 100)
4. Form norm(x) by dividing x by 10ilx (e.g. x ÷ 10ilx = 23.456 ÷ 100 = 0.23456 = norm(x))

 Unix’s rounding function rounds its argument to the nearest integer, so next we’ll shift the desired n
 digits of x into the integer position:

5. Raise 10 to the nth power (e.g. 103 = 1,000)
6. Multiply Norm(x) by 10n to isolate the desired n digits of x in the integer part (e.g. norm(x)· 10n =

0.23456 · 1,000 = 234.56)
7. Round that result to the nearest integer (e.g. round(234.56) = 235.)

 Next, normalize that rounded version then shift it to its original position:
8. Divide by 10n to form the normalized result (e.g. 235. ÷ 10n = 0.235)
9. Finally, multiply by 10ils to undo the normalization (e.g. 0.235 · 10ilx = 0.235 · 102 = 23.5 voila! n

digits!)

 This algorithm works pretty well:

But, oops: The 3-digit form of 0.234567 should be 0.235, and the 3-digit form of 0.9019019 should be
0.902. Hence, the mystery: When and why does the algorithm fail? Which steps need to be changed?  

x n n digits log(x)

23.4567 3 23.5 1.3702669

9.019019 3 9.02 0.95515930

2.34567 3 2.35 0.37026691

1.108768 3 1.11 0.044840683

0.9019019 3 0.9 -0.044840698

0.234567 3 0.23 -0.62973309

0.0234567 3 0.0235 -1.6297331

0.00234567 3 0.00235 -2.6297331

A correct Frrr version of the algorithm!
Keep n digits of x starting with leading nonzero digit!
(for decimal x and 1 <= n <= 8)!
Setup: F1 = n+x/0!
Result: n-digit-form in F2num!!
Make sure x is decimal, not an integer:!
 @< {{ SkipWhen F1num isDecimal }}>!!
 @< {{ hp(put/- NOT DECIMAL-/ h1n !
 PUT/- F1num must be decimal, not integer -/ hShow) @}}>!!
Save the desired precision in s1 as 10-to-the-n:!
 @<{{ hp(get f1i !
 00c __exp10 sto 1) }}>!!
1. Compute lx = log(x) into s2!
 @<{{ hp(get f1n !
 00c log10 sto 2)!
 SkipWhen <s>2 LT0 }}>!!
2. If log x >= 0 modify it by adding 1 to it:!
 @<{{ hp(rcl 2 1 00+ dupx sto 2) }}>!!
3. Raise 10 to the power ilx = int(s2)!
 @<{{ hp(rcl 2 00c trunc ooc __exp10 sto 2) }}>!!
4. Normalize x by dividing it by 10 to the power ilx!
 @<{{ hp(get f1n rcl 2 00/) }}>!!
5,6. Isolate the desired n digits of x as an integer!
 @<{{ hp(rcl 1 00* sto 3) }}>!!
7,8. Round, then normalize that result into s3!
 @<{{ hp(rcl 3 00c round rcl 1 00/ sto 3) }}!!
9. Undo the original normalization!
 @<{{ hp(rcl 3 rcl 2 00* sto 3) }}!!
Display the result in F2num, then repeat from the start!
 @<{{ hp(rcl 3 00put f2n) @}}!

