A Numeric Mystery

One way to simplify a decimal number x (*e.g.* 23.456) is to discard all but n digits (*e.g.* 3 digits), keeping only the most significant nonzero digit and the following n-1 digits (*e.g.* 23.456 simplifies that way to 23.5). As a text-editing task, this is quite easy to do. As a numeric task it's trickier.

Here's a way to do it numerically, without ever seeing the text form of the numbers: Start by converting x to a "normalized" form, whose highest non-zero digit occurs immediately after the decimal point (*e.g* 23.456 normalizes to 0.23456). To accomplish this — without looking — we can use the number ilx computed as follows:

Start by creating the normalized form of x:

- 1. Compute the integer part ilx of $log_{10}(x)$ (e.g. ilx = int($log_{10}(23.456)$) = int(1.37025) = 1)
- 2. If ilx >= 0 then add 1 to it (e.g. ilx becomes 2)
- 3. Raise 10 to the power ilx (*e.g.* $10^2 = 100$)
- 4. Form norm(x) by dividing x by 10^{ilx} (e.g. x ÷ 10^{ilx} = 23.456 ÷ 100 = 0.23456 = norm(x))

Unix's rounding function rounds its argument to the nearest integer, so next we'll shift the desired n digits of x into the integer position:

- 5. Raise 10 to the nth power (e.g. $10^3 = 1,000$)
- Multiply Norm(x) by 10ⁿ to isolate the desired n digits of x in the integer part (*e.g.* norm(x) · 10ⁿ = 0.23456 · 1,000 = 234.56)
- 7. Round that result to the nearest integer (e.g. round(234.56) = 235.)

Next, normalize that rounded version then shift it to its original position:

- 8. Divide by 10^{n} to form the normalized result (*e.g.* 235. \div 10ⁿ = 0.235)
- Finally, multiply by 10^{ils} to undo the normalization (e.g. 0.235 · 10^{ilx} = 0.235 · 10² = 23.5 *voila*! n digits!)

This algorithm works pretty well:

x	n	n digits	log(x)
23.4567	3	23.5	1.3702669
9.019019	3	9.02	0.95515930
2.34567	3	2.35	0.37026691
1.108768	3	1.11	0.044840683
0.9019019	3	0.9	-0.044840698
0.234567	3	0.23	-0.62973309
0.0234567	3	0.0235	-1.6297331
0.00234567	3	0.00235	-2.6297331

But, oops: The 3-digit form of 0.234567 should be 0.235, and the 3-digit form of 0.9019019 should be 0.902. Hence, the mystery: When and why does the algorithm fail? Which steps need to be changed?

A correct Frrr version of the algorithm

Keep n digits of x starting with leading nonzero digit (for decimal x and $1 \le n \le 8$) Setup: F1 = n+x/0 Result: n-digit-form in F2num

Make sure x is decimal, not an integer: @<{{ SkipWhen F1num isDecimal }}>

@<{{ hp(put/- NOT DECIMAL-/ h1n PUT/- F1num must be decimal, not integer -/ hShow) @}}>

```
Save the desired precision in s1 as 10-to-the-n:
@<{{ hp( get f1i
00c __exp10 sto 1 ) }}>
```

- 1. Compute lx = log(x) into s2 @<{{ hp(get f1n 00c log10 sto 2) SkipWhen <s>2 LT0 }}>
- 2. If log x >= 0 modify it by adding 1 to it: @<{{ hp(rcl 2 1 00+ dupx sto 2) }}>
- 3. Raise 10 to the power ilx = int(s2)
 @<{{ hp(rcl 2 00c trunc ooc __exp10 sto 2) }}>
- 4. Normalize x by dividing it by 10 to the power ilx @<{{ hp(get f1n rcl 2 00/) }}>
- 5,6. Isolate the desired n digits of x as an integer @<{{ hp(rcl 1 00* sto 3) }}>
- 7,8. Round, then normalize that result into s3 @<{{ hp(rcl 3 00c round rcl 1 00/ sto 3) }}
- 9. Undo the original normalization @<{{ hp(rcl 3 rcl 2 00* sto 3) }}
- Display the result in F2num, then repeat from the start @<{{ hp(rcl 3 00put f2n) @}}