
! What’s New in Frrraction
! A quick survey of pre-0.9.9950
Originally there were just ratios: Pure Fractions n/d — an integer “stack” said to be Proper if the
magnitude of n/d is less than 1, otherwise Improper). Then Mixed Fractions i + n/d — an integer plus a
proper stack. All the arithmetic was oriented towards fractions. The only decimal number capability was
confined to little frrrApps the user could create in the high-precision sections hp(...) of CF brackets.
Frrraction’s total focus was on exact arithmetic, not convenient approximations.
Eventually Decimal numbers got a toehold in the space normally occupied by fraction F1. The decimal
was only allowed in F1int while F1’s stack was forced to be 0/0. The indeterminate value in n/d showed
that F1 was then totally defined by the decimal value in F1int. Only five things could be done with

A decimal number...
(1) ... could be entered from the key-strip. There was no decimal-point key so the decimal point was

entered via a rapid double-tap on the 0-key while F1int was the active Fcell. The double-tap-0 was
referenced in the documentation as “00”.

(2) ... could be converted from decimal to fraction (from “flat” to “stack”) by touching any Fcell except
F1int. The resulting fraction was created by the standard conversion, superficially considered to be
an exact representation of the decimal number: i.f —> i + f /d where d is “1” followed by the same
number of zeros as f has digits, e.g. 3.23 —> 3 + 23/100.

(3) ... could be created in F1int from either of the two fractions F1 or F2 by executing 00 on any Fcell
except F1int. As always, the decimal value was created in F1int and the F1-stack changed to 0/0.

(4) ... in F1int could be the target of the APRX function, which would place its best rational
approximation — much better than the standard conversion — into fraction F2.

(5) The yellowFunction CF could convert back and forth between the decimal number in F1int or the
n/d-stack in F1 or F2 and either its Continued Fraction [] or its Egyptian Fraction {} equivalent. For
instance, 3.23 could be expressed as (a) continued fraction, (b) egyptian fraction:

! !

(a) 3.23= [3;4,2,1,7]

= 3+ 1

4 + 1

2 + 1

1+ 1
7

!!
(b) 3.23= {3;5,34,1700}

= 3+ 1
5
+ 1

34
+ 1

1700
!

That’s where things stood for quite a while. More recently, Frrraction has gotten serious about the
decimal format.

! An intro to post-0.9.9950
In a nutshell, since version 0.9.9950, Frrraction fully embraces decimals as well as ratios. For starters,
Frrraction’s key-strip now has a key dedicated to the decimal point and double-tap 00 is a thing of the
past (although it still appears in the documentation since 00 is less awkward than · to read and write).

Integers and decimals
Decimal numbers look like 3.23 or 0.00323e+03 or 323.e-02 or 323e-02 (which all represent the same
decimal number). They contain a decimal point or the letter “e” or both. All others are integers that look
like 323 with no dot nor “e”.

Monday, July 21, 2014! Page 1 of 13

The “e” exponent notation multiplies the number by the indicated power of ten. It essentially shifts the
position of the decimal point left (negative exponent) or right (positive exponent) by the indicated
number of digit positions.
The backspace-delete key (above the Dot key on Frrraction’s key-strip) functions as usual on decimals
as well as integers. If you backspace-delete past the decimal point, the Fcell reverts to integer.

Tapping the Dot key
• If you tap the Dot key, it appends a decimal point to the integer in the active Fcell if the Fcell did not

already have a decimal point. It also changes the font-color to blue. Tapping digit keys or backspace-
delete modifies the fractional portion of the decimal number.

• If the active Fcell is already decimal by virtue of having a decimal point but no exponent then tapping
the Dot key appends “e+0” (which leaves the value of the number unchanged until tapping digit keys
or backspace-delete modifies the exponent).

• If the active Fcell already has an exponent then tapping the Dot key changes the sign of the
exponent. Y CHS changes the sign of the Fcell’s number, as usual.

• Several taps of the backspace-delete key can remove the exponent entirely if you wish. More b-del
taps can remove the decimal point, reverting the number to an integer and font-color black.

Decimal arithmetic + − x ÷ (that’s + − x / on the key-strip)
A fraction is always a team by itself: Its numerator Fnum, denominator Fden, and integer part Fint
cooperate inseparably in all operations. In Frrraction, the two visible fractions work as a pair: F1 and
F2 are mates and at any time one is the active one which receives the results of various operations.
Similarly, decimals work in pairs: If the space occupied by either F1num or F2num presently holds a
decimal each is the other’s mate and both are highlighted by blue font-color. Likewise F1den and
F2den are mates, as are F1int and F2int, sharing font color in pairs.
If the active Fcell or its mate (or both) contains a decimal then the four arithmetic operations +add, -
sub, *mul, and /div use decimal arithmetic to combine just the active Fcell and its mate — not the
whole fractions. The active Fcell gets the result and its mate remains unchanged. The arithmetic result
is always decimal so the font-color of the result and its mate is always blue. The UNDO gesture Y-RCL-
Dot swaps back and forth between the original data and font-colors in the active Fcell and the result.
If neither the active Fcell nor its mate is decimal then the arithmetic ops perform fraction arithmetic —
not decimal — on the two complete fractions. The after-the-decimal-point fractional parts of any
decimals in both F1 and F2 are ignored in the arithmetic, and the result in the active fraction is
composed entirely of three integers. The UNDO gesture swaps back and forth between the original
contents of the active fraction and the op results all with the correct font-colors.
Frrraction still refers to all the Fcells by names like F1num and F2num even though, while decimal, they
have no role as numerators. For convenience and to play down their ratio roles, all the fraction cells
now have shortened nicknames: f1n, f2n, f1d,... etc. The nicknames are especially handy when writing
frrrApps.

XCH and DUP
If the currently active Fcell contains an integer then XCH exchanges the entire fractions F1 ↔︎ F2. If the
active Fcell currently contains a decimal then XCH exchanges only it with its mate, e.g. F1d ↔︎ F2d. In
either case if you change your mind, XCH serves as its own UNDO function.

DUP copies active to mate analogously: whole fractions Factive Fmate if active cell is an integer, or
single cells like F2n F1n if active cell is decimal. UNDO is set to restore the original inactive mate.

Monday, July 21, 2014! Page 2 of 13

00c makes Frrraction into a major full-function calculator
There’s been a big decimal enhancement in the CF hp(...) facility: The new 00c keyword opens the
door to most of the classic C-language math.h functions that process decimals. Everything the big
calculators offer and more (except graphing).
There are four groups of functions: Single-argument, double-argument, triple-argument, and no-
argument. In Frrraction, the single-arg functions pull their argument from X (the top of the hp-stack) and
push their result onto the stack into X, e.g. hp(100 00c log10) leaves X = log10(100) = 2.

The two-arg functions pull their two double-precision arguments from X then from Y and push their
result back into X, e.g. hp(2 3 00c pow) leaves 32 = 9 in X. The function pow(x,y) is defined as xy.
Note that ‘2’ got pushed initially into X, but ‘3’ made room for itself in X by pushing ‘2’ into Y, so that’s
how pow(X,Y) became pow(3,2) = 32 = 9.
Note that there’s an integer for one of the arguments of some of the functions. Also there’s an address-
of-double for the second argument of modf and an address-of-integer for frexp--just give the argument
a slot in the Y-position of the stack; the function will leave the main result in X and computed value of
the address-of argument in Y on the stack, viz. hp(0 12.34 00c frexp 00put f1n puts f1d)
puts 0.77125000 / 4 into fraction F1. Subsequently, hp(get f1d get f1n 00c ldexp 00put f1i)
makes F1 = 12.340000 + 0.77125000 / 4.

There’s only one three-arg function, a fast, accurate multiply-add x*y+z combination:

Each of the constants just pushes its value into X, e.g. hp(00c M_E) leaves the base e ≅
2.718281828459044864 of the natural logarithm in X.

The functions in those four groups comprise without doubt the most famous collection in the world of
computation, having been a central part of the C programming language and the Unix operating system
from their inception on a Digital Equipment Corporation DEC PDP-11 since the 1970’s. Locate their
definitions (except for frrrdemo) on the web by Googling math.h.

One argument: X = f(X)
floor, ceil, nearbyint, rint, round, trunc, fabs, sqrt, cbrt, exp, exp2, __exp10, expm1, log,
log2, log10, log1p,logb, cos, sin, tan, cosh, sinh, tanh, acos, asin, atan, acosh, asinh,
atanh, erf, erfc, tgamma, lgamma, j0, j1, y0, y1, remainder, fdim, fmax, fmin, hypot,
pow, atan2, fmod.

Two arguments: X = f(X,Y)
copysign, nextafter, fmod, remainder, remquo, fdim, fmax, fmin, hypot, modf(d,&d),
frexp(d,&i), ldexp(d,i), pow, soclbn(d,i), jn(i,d), yn(i,d), atan2, frrrdemo

Three arguments: X = f(X,Y, Z)
fma

No arguments: X = constant
M_PI, M_E, M_LOG2E, M_LOG10E, M_LN2, M_LN10, M_PI_2, M_PI_4, M_1_PI, M_2_PI,
M_2_SQRTPI, M_SQRT2, M_SQRT1_2

Monday, July 21, 2014! Page 3 of 13

The presence of math.h in Frrraction makes it easy to explore the functions’ detailed behaviors. For
example, have you ever made the effort to learn how the floor and ceiling functions handle negative
numbers? Now there’s no excuse not to do it:
! ! Applet:! ! ! ! Result:

But...

Decimals are deceptive
When any Fcell contains a decimal, the cell no longer contains a truly unique number. Exact integer
stuff like ratios, factors, common divisors, common multiples, and the like essentially become irrelevant.
Frrraction’s GCD function, for instance, has nothing meaningful to do because any decimal is a factor of
any decimal — there is no least or greatest.
The problem is that decimals are generally not exact. They’re not even intended to be exact.
For example if you’re given the decimal 3.452 the exact number can be anywhere from 3.4515 (that’s
-5 in the first unspecified digit) up to almost 3.4525 (anything less than +5 in the first unspecified digit)
— and it would still round off to the same 3.452. The denominators of exact fractions that represent
numbers in that range have no upper limit. (There is a lower limit — it is 30 for the 3.452 example;
determining that lower limit is the essence of APRX’s job.)

The GCD function
If decimals are present in the active fraction’s stack there is no “greatest common divisor”. Rather than
make an arbitrary assumption about how the user wants to handle decimals in the active fraction, GCD
simply discards the .fraction portions of the decimals in the active fraction and works with the integer
portions. So, actually, it does make an arbitrary assumption. If you didn’t want the .fractions discarded,
UNDO will recover the original contents for you.
GCD does one other thing if Frrraction is running in mixed-fraction mode: It displays an 8-digit decimal
approximation of each fraction in the fraction’s Hden cell.

The S||F “Stacken or Flatten” function
The S||F (Y Dot) function looks at the active fraction’s specific active Fcell to decide what to do.
If the active Fcell is a decimal i.f then S||F stacks the standard i+n/d ratio value of that decimal in the
active fraction.
If the active Fcell is an integer then S||F discards the fraction-portions of any decimals in the active
fraction’s other Fcells, flattens the resulting i+n/d ratio value into a single decimal in the active fraction’s
Fint cell, and sets n/d = 0/0.
In either case, UNDO will let you toggle back and forth between the original contents of the active
fraction and the stacked or flattened result.

The ApPRoXimation function
The APRX function does either a precise match or a “kitchen approximation”. The result replaces the
original contents of the active fraction.

That precise match is one of the showcase features of Frrraction➣. Given a decimal (a flat number
with decimal point and/or power-of-ten exponent), APRX counts the number of digits you gave in the
specified number. It then locates — among all ratio fractions which match the specification to that

<{{ hp(3.45 dupx 00c floor
 -3.45 dupx 00c floor
 =T)
 }}

X: -4
Y: -3.45
Z: 3
T: 3.45

Monday, July 21, 2014! Page 4 of 13

number of digits — the one with the smallest possible denominator. It compares five different methods
in the computation and reports the best as the result.
The kitchen approximation restricts its search to finding the best among ratio fractions with the
kitchen denominators 2, 3, 4, 6, 8, and 16. It compares the best two and uses the best to replace the
original contents of the active fraction. That’s useful outside the kitchen, too: Your high school
physics instructor told you Planck’s Constant was...what? He said 6.62606957e-34 and you didn’t
remember it five minutes later. But if he had given you APRX’s kitchen version 6 5/8 (times 10-34) then
you might have had a chance — and it’s only off by 0.1%
APRX looks at the contents of the active Fcell to decide whether to do precise or kitchen. If it contains a
decimal point or exponent, it goes for precision. An integer gets you a kitchen simplification.
➣ Note: APRX’s precise match is a vast improvement over the standard match used by most fraction
programs. That standard conversion converts i.f into i + f/10n where n is simply the number of digits in f.
For example, from 3.1415929 the standard produces 3 + 1,415,929/10,000,000. In contrast, APRX
finds 3 + 16/113. (Full disclosure: I stumbled upon that example while using APRX to find an
approximation for Pi that would be good to the first 8 digits of Pi: 3.1415927. It found 3 + 4,639/32,763.
Then I gave it 3.1415928, and got 3 + 7,359/51,973 − much worse than for eight digits of Pi itself. But
who could have guessed that going 0.0000001 larger would win the gold medal? I don’t know who
found it first, but the spectacular denominator 113 has been known since the 1600’s as yielding the
most efficient approximation for Pi. It is also what APRX yields if you request an approximation good for
just 7 digits: 3.141593.

APRX present status
Now that Frrraction has gotten so cosy with decimals I’ve started looking at how APRX should adapt.
My first thought was to incorporate the power-of-ten multiplier notation. That was easy enough: I just
made it strip off the “exx” suffix, run the old APRX, then tack the exx back on. One of the early
examples I tested was 6.78e2 which became 6e2 + 7e2/9 whose 32-bit decimal is 6.7777778e2 or
677.77778. Hmmm, I thought. It shouldn’t be that hard to approximate 6.78e2 to three digits; it is just
678 which is not only more accurate but also easier to get. So I changed APRX to look for the special
cases where the given decimal is an integer in disguise. So far, so good: Given decimals like
1.23456e5 it now reliably gives the obvious accurate answer 123,456. It also does disguised-integer
cases like 1.234e6 → 1,234,000. If the power-of-ten exponent is too large, it handles it gracefully, for
example 1.234e10 → 1e10 + 11e10/47 whose 32-bit decimal form is 1.2340426e10, accurate to the
specified four digits.
Now the question is: When does this stop being a good thing to do? By fiddling with exponents, any
APRX problem has an integer solution exact to all the digits Frrraction can accept. For example,
3.14159265 is 314,159,265.e-8 which is an exact match to all nine given digits. But as an efficient ratio
approximation is it anywhere near as good as 3+16/113 whose decimal version is off by 2 in the eighth
digit. Of course not.

So. What’s the future of this line of development?
1. I’m tempted to go back to never allowing exponents in the specification decimals for APRX to work

with. Actually, though, APRX is all about how you present the numbers, so I think the best course will
be for users to experiment until they get the effect they want in each circumstance.

2. Sometimes an Fcell contains a blue integer or a black decimal. I’m rooting those out as they appear.
3. To highlight the special arithmetic that applies to decimal mates, I’m thinking of making — no, I have

forced — each Fcell and its mate have the same font color: blue if either is decimal, black only if both
are integers. I think this should reduce the surprise sometimes caused by expecting Fcell-by-Fcell
arithmetic or whole-fraction-by-whole-fraction arithmetic but actually getting the other. Luckily, UNDO
will always restore the originals.

Monday, July 21, 2014! Page 5 of 13

4. I’m thinking of using three different decimal font colors: maybe blue for Fnums, green for Fdens, and
some other — maybe purple — for Fints. Especially now that mates always have matching colors.
But I’m leaning towards not doing that, as it might add visual clutter without adding clarity.

5. I’m not pleased with the way GCD and S||F deal with decimals. If decimals are present I’m thinking
to have GCD make no change in the n/d stack, and revert to decimal arithmetic to compute i + n/d
for the flattened display. Likewise, maybe S||F should do that same kind of decimalized flattening
computation if decimals are present. It really makes no sense to truncate the decimals to their
integer parts then treat the result as though it had magically become an exact fraction.

6. CF functions are presently able to edit results and comments into the frrrNote, which sometimes
become a nuisance to remove. They can also write them to the fShow area in the upper-right quarter
of the screen--which evaporate as soon as you tap any key. I might provide a separate text field
which the user can display or hide at will.

7. Presently Frrraction’s “computed decisions” facility: SkipWhen <Fcell> <meets condition> only
provides for skipping the very next bracket. This allows a very useful but limited if-then and an if-
then-else execution. I want to strengthen it by adding a To <specific bracket>. The plan is to allow
brackets to have identifying labels of the form #<n> with n between 0 and 9. For instance:

! ! @<{{ ... SkipWhen F2d NE0 To #7 }}> @<{{ ... }}> @<{{ ... }}> ... #7@<{{ ... }}> @<{{ ... }}>
! would have this effect: If F2den is not zero when the SkipWhen executes then the next bracket to
! execute will be the one labeled #7. All the intervening brackets including #7 will lose an enabler so,
! after #7 finishes, control will pass on to the next enabled brackets after #7.
8. When Frrraction got its own private file structure I didn’t realize how important it would become. It’s
! starting to seem too awkward to have to EDIT a file command (<|n| to reload a saved note, >|n| to
! store the present note, -|n| to delete a stored note, or ?|n| to show the list of stored notes) into the
! current fNote then Return-to-frrr then FILE to execute the command. I think I want to convert all that
! to a ListView so it looks and acts something like the list of reminders in iOS 7’s Reminders app.

What else is new?
(1) As of version 0.9.9958 I changed Frrraction’s opening screen to offer a more useful startup.

For as long as I can remember, after your mandatory yellowKey tap, the easiest thing to do was
to tap FILE and see a description of the most recent main change in the program.You can still
see all those if you want to, by loading frrrFile |0|. But it’s no longer the easiest thing to do.
Now the easiest thing to do is to tap FILE which is preset in the frrrNote to load frrrFile |3|. File |
3| is an major example of a frrrApp. after you specify in F1int the number of terms to add to the
sum then Ytap CF, it adds that many terms to Brouncker’s continued fraction formula for Pi.
Every 25 steps along the way, it tells its current estimate of Pi, as well as a peculiar cancellation
of powers-of-ten it needs to do in order to avoid gigantic numbers in the intermediate steps.

(2) FrrrFile |1| has also been updated, making it a better guide to Frrraction’s programmability.
(3) On the easy side: Frrraction needs a new ·Dot button. And I liked the older more three-dimensional

digit buttons. And the arithmetic buttons in the vertical part of the key-strip should be the same size
as the digit buttons.

(4) Frrraction can now sometimes save your work if the system closes in the background, and offers to
reload that job next time you run the app. I say “sometimes” because the system doesn’t always
deliver a warning before the closing.

(5) hp(...)’s cell manipulation facility has been enriched, allowing access to all Fcells and Hcells.
(6) I’ve added a faux-math.h function named frrrdemo and a frrrApp in file |6| which let you explore the

way math.h handles decimal roundoff.

Monday, July 21, 2014! Page 6 of 13

Appendix 1: LIST OF math.h FUNCTIONS
The following came from: https://developer.apple.com/library/mac/documentation/Darwin/
Reference/Manpages/man3/math.3.html Similar descriptions are widely available on the internet
by Googling for math.h.

 Each of the functions that use floating-point values are provided by math.h in
	 single, double, and extended precision; the double precision prototypes are
	 listed here. The man pages for the individual functions provide more details
	 on their use, special cases, and prototypes for their single and extended
	 precision versions. In Frrraction the math.h facility is accessed using the hp keyword 00c. Frrraction
 commands are usually case-insensitive, but 00c is case-sensitive so the function names must be lowercase and the
 mathematical constants must be uppercase exactly as shown. The arguments are pulled from the hp stack and the
 results are pushed onto the hp stack, so 00c needs only the function name.
 Example: <{{ hp(7 53 00c fmod =X) }} yields X: 4

 double copysign(double, double)
 double nextafter(double, double)

 copysign(x, y) returns the value equal in magnitude to x with the sign of y.
	 nextafter(x, y) returns the next floating-point number after x in the direction
	 of y. Both are correctly-rounded.

 Omitted from Frrraction: double nan(const char *tag)

 The nan() function returns a quiet NaN, without raising the invalid flag.

 double ceil(double)
 double floor(double)
 double nearbyint(double)
 double rint(double)	Rounded to integer based on current rounding mode: down, nearest, toward zero, or up
 double round(double) Rounded to integer closest to x, e.g. 5.8
 Omitted from Frrraction: long int lrint(double)
 	Omitted from Frrraction: long int lround(double)
 	Omitted from Frrraction: long long int llrint(double)
 	Omitted from Frrraction: long long int llround(double)
 double trunc(double) integer by simply discarding fraction, e.g. 5.8

 These functions provide various means to round floating-point values to
	 integral values. They are correctly rounded.

 double fmod(double, double) gives true value of x (mod y) if x and y are both > 0
 double remainder(double, double) peculiar, see below
 double remquo(double x, double y, int *) peculiar like remainder

 These return a remainder of the division of x by y with an integral quotient.
 	 remquo() additionally provides access to a few lower bits of the quotient.
	 They are correctly rounded. r = x - q·y where (peculiarly) q is the integer closest to x/y

Monday, July 21, 2014! Page 7 of 13

https://developer.apple.com/library/mac/documentation/Darwin/Reference/Manpages/man3/math.3.html
https://developer.apple.com/library/mac/documentation/Darwin/Reference/Manpages/man3/math.3.html
https://developer.apple.com/library/mac/documentation/Darwin/Reference/Manpages/man3/math.3.html
https://developer.apple.com/library/mac/documentation/Darwin/Reference/Manpages/man3/math.3.html

 double fdim(double, double)
 double fmax(double, double)
 double fmin(double, double)

 fmax(x, y) and fmin(x, y) return the maximum and minimum of x and y,
	 respectively. fdim(x, y) returns the positive difference of x and y. All are
	 correctly rounded.

 double fma(double x, double y, double z)

 fma(x, y, z) computes the value (x*y) + z as though without intermediate
	 rounding. It is correctly rounded.

 double fabs(double)
 double sqrt(double)
 double cbrt(double)
 double hypot(double, double)

 fabs(x), sqrt(x), and cbrt(x) return the absolute value, square root, and cube
	 root of x, respectively.
 hypot(x, y) returns sqrt(x*x + y*y). fabs() and sqrt() are correctly rounded.

 double exp(double)
 double exp2(double)
 double __exp10(double)
 double expm1(double)

 exp(x), exp2(x), __exp10(x), and expm1(x) return e**x, 2**x, 10**x, and e**x
	 - 1, respectively.

 double log(double)
 double log2(double)
 double log10(double)
 double log1p(double)

 log(x), log2(x), and log10(x) return the natural, base-2, and base-10
	 logarithms of x, respectively.
 log1p(x) returns the natural log of 1+x.

 double logb(double)
 Omitted from Frrraction: int ilogb(double)

 logb(x) and ilogb(x) return the exponent of x.

Monday, July 21, 2014! Page 8 of 13

 double modf(double, double *) hp(456.7e-1 00c modf =Y) X = 0.670000, Y = 45
 double frexp(double, int *)

 modf(x, &y) returns fractional part of x and stores integral part in y.
	 frexp(x, &n) returns the mantissa of x and stores the exponent in n. They are
	 correctly rounded.

 double ldexp(double, int)
 double scalbn(double, int)
 double scalbln(double, long int)

 ldexp(x, n), scalbn(x, n), and scalbln(x, n) return x*2**n. They are correctly
	 rounded.

 double pow(double, double)

 pow(x,y) returns x raised to the power y.
	 	 	 	 00c complies, but all other Frrraction powers and hp calculators do y to the power x

 double cos(double)
 double sin(double)
 double tan(double)

 cos(x), sin(x), and tan(x) return the cosine, sine and tangent of x,
	 respectively. Note that x is interpreted as specifying an angle in radians.

 double cosh(double)
 double sinh(double)
 double tanh(double)

 cosh(x), sinh(x), and tanh(x) return the hyperbolic cosine, hyperbolic sine and
	 hyperbolic tangent of x, respectively.

 double acos(double)
 double asin(double)
 double atan(double)
 double atan2(double, double)

 acos(x), asin(x), and atan(x) return the inverse cosine, inverse sine and
	 inverse tangent of x, respectively. Note that the result is an angle in
	 radians. atan2(y, x) returns the inverse tangent of y/x in radians, with sign
	 chosen according to the quadrant of (x,y).

 double acosh(double)
 double asinh(double)
 double atanh(double)

 acosh(x), asinh(x), and atanh(x) return the inverse hyperbolic cosine, inverse
	 hyperbolic sine and inverse hyperbolic tangent of x, respectively.
Monday, July 21, 2014! Page 9 of 13

 double tgamma(double)
 double lgamma(double)

 tgamma(x) and lgamma(x) return the values of the gamma function and its
	 logarithm evalutated at x, respectively. [Don’t bother to look for this on
	 your standard calculator!]

 double j0(double)
 double j1(double)
 double jn(int, double)
 double y0(double)
 double y1(double)
 double yn(int, double)

 	j0(x), j1(x), and jn(x) return the values of the zeroth, first, and nth Bessel
	 function of the first kind evaluated at x, respectively. y0(x), y1(x), and
	 yn(x) return the values of the zeroth, first, and nth Bessel function of the
	 second kind evaluated at x, respectively. [Don’t look for Bessel functions on
	 your old calculator.]

 double erf(double)
 double erfc(double)

 erf(x) and erfc(x) return the values of the error function and the complementary
	 error function evaluated at x, respectively.

 double frrrdemo(double, int)
 	 frrrdemo(x,n) Version 1 returns x rounded according to the spec coded in
	 n = 10c+r where r specifies the rounding mode: 0 ↔︎ downward,
	 1 ↔︎ to nearest integer, 2 ↔︎ toward zero, and 3 ↔︎ upward. c = 0 uses rint and
	 c = 1 uses round. Example: n = 1 (r=1,c=0) and x = 6.37e1 yield 64 while
	 x = 6.37 yields 6.

MATHEMATICAL CONSTANTS
 CONSTANT VALUE
 M_E base of natural logarithm, e
 M_LOG2E log2(e)
 M_LOG10E log10(e)
 M_LN2 ln(2)
 M_LN10 ln(10)
 M_PI pi
 M_PI_2 pi / 2
 M_PI_4 pi / 4
 M_1_PI 1 / pi
 M_2_PI 2 / pi
 M_2_SQRTPI 2 / sqrt(pi)
 M_SQRT2 sqrt(2)
 M_SQRT1_2 sqrt(1/2)
Monday, July 21, 2014! Page 10 of 13

Appendix 2: A Pre-math.h CF App
This example uses a beautiful continued fraction expansion to calculate Pi
Around the year 1650, a man destined to be the first president of The Royal Philosophical Society of
London

Pi by cont'd frac'ns |29|v6
Here's math.h Pi to 16 digits:
{{ hp(00c M_PI =X) }}
X: 3.141592653589793

F1num = 5001 got Pi ~= 3.1412 (four digits) in about 26 minutes on iPad mini Model ME277LL/
A (using >98% of the dual core 1.3 GHz Apple A7 cpu)
Avg(501,503)=3.1415848 (off by 1 in digit 6) took only about 7 minutes!
Avg(1001,1003)=3.1415906,
exact to 6 digits, rounds to be off by only 2 in the 7th digit.

S2 accumulates 4/Pi
S3 is to restore original n
{{ F1num MakeOdd
hp(2 sto 2
get f1n sto 3) }}>

S0 is short-loop counter
S1 decrements n
•<{{ hp(get f1n sto 1
get f1i sto 0) }}>

@<{{ hp(
rcl 1 dupx 00*
rcl 2 00/
2 00+
sto 2
) }}>

@<{{ hp(rcl 1 2 - dupx sto 1 put f1n)
SkipWhen F1n LT0 }}>

Stop closing the loop when n goes negative
@<{{ @ }}

Unwind 4/Pi to Pi
@<{{ hp(rcl 2 1 00-
1 xchxy 00/
4 00*
00put f1d
rcl 3 put f1n
) }}

Monday, July 21, 2014! Page 11 of 13

Appendix 2: An Example CF app
This example adjusts numeric precision
Internally, Frrraction’s APRX does something like this to compare ratio fractions with the user-specified
target in search of the best match. Without the recent addition of math.h, Frrraction’s brackets could not
accomplish the same thing. Now they can. Here’s one that lets you specify in F1int the number of digits
of precision you want to use for representing the decimal in F1num.
The method is to normalize x = i.f by shifting the decimal point left or right to obtain the form 0.f where
the fraction part f itself has no leading 0’s. Then multiply by 10n to make the leading n digits become the
integer part. Then use the math.h round function to eliminate the fractional part. Then divide by 10n to
get n digits back into normalized form. Then de-normalize to the desired result by shifting the decimal
point back to the position originally specified in F1num by the user.
(Note: Shifting the decimal point of a number can be achieved by changing the integer part of the
base-10 logarithm of the decimal number.)

Keep n digits of x |24|v3	 |24| is an inactive FILE command
(restricted to 1 <= n <= 8)	 Normal parentheses () are not brackets
Setup: F1 = n+x/0	 Text not enclosed by{{}} or | | or [] or { } is just text
Result: n-digit f2n

Save the requested precision n
as 10-to-the-n in S1
@<{{ hp(get f1i
00c __exp10 sto 1	 00c __exp10 computes 10X into X
 sto <n> stores value into hp storage Sn (0 <= n <= 9)
 Sn holds a decimal or an integer;
 not the same as frrr’s Fn which stores a ratio fraction.
put/- 0: x-/ h1n	 put/- <text> -/ <cell> displays text in Fcell or Hcell
put/- 0: n-/ h1i) }}>	 h1n and h1i are two of the Hcells (H for help)

Set to normalize x, putting
int(log(x)) into S2
@<{{ hp(get f1n 	 f1n is an Fcell (nickname for F1num) (F for Fraction)
00c log10 dupx 	 00c log10 computes log10(X) into X
00put f1d 	 Dupx is needed for the display copy
	 00put <cell> stores decimal into named F- or Hcell
 In this case, f1d is log10(x) so is negative if x has no
 integer part, i.e. x = i.f with i = 0.
 put/- 0: log x-/ h1d
sto 2)
SkipWhen f1den LT0 }}>	 Causes next bracket to be skipped if F1den < 0
 Its <enabler gets removed though, and its >nopause
 (continue without pause) gets obeyed if present.
 Adjust if log x >= 0 i.e. x >= 1	
 @<{{ hp(get f1d 1 00+ 	 Do you see why this is not necessary when log10(x) < 0 ?
 sto 2) }}>
@<{{ hp(rcl 2	 In either case, this grabs just the integer part...
00c trunc sto 2 	 ... and saves it in S2.

Monday, July 21, 2014! Page 12 of 13

) }}>

Normalize x
S2 holds int of log
@<{{ hp(get f1n	 Remember, F1num holds the user’s decimal x
00c log10	 This...
rcl 2 00-	 ...accomplishes...
00c __exp10 dupx	 ...the normalization of x
00put f2i 	 This displays it in F2int
 put/- 1: norm'd-/ h2i	 and this informs the user
sto 3) }}>	 Needed since hp stack is re-zeroed between brackets
	 (We separated into brackets so between-bracket text
 could be inserted for explanatory documentation.)
Round the norm'd x by making
the first n digits comprise
the integer part of a number
then discarding the fractional part.
(remember, S1 contains 10^n)
@<{{ hp(rcl 3 rcl 1 00* 	 Rcl 3 to recover norm’d x from the previous bracket.
00c round
rcl 1 00/ dupx
00put f2d
	 put/- 2: round norm-/ h2d
sto 3 	 Another sto 3 and...
) }}>
	 ... rcl 3 maneuver required for the
Denormalize result	 ... Denormalize result
@<{{ hp(rcl 3 00c log10 	 	 ...between-brackets documentation text
rcl 2 + 00c __exp10
00put f2n
	 put/- 3: result-/ h2n
) @}}	 the inside-@ re-enables all the above @{{ to @<{{
 ready for the next yTap of CF for a new x-value.

Monday, July 21, 2014! Page 13 of 13

