Uniqueness Achieved

(i think) (rethinking 3/13/2022: maybe uniqueness was just a flash in the pan?)

here is no ambiguity in the center *c* nor integer *i* of the factorizations (c;e) or (i;u), nor in the base units e_{r_o} or u_{r_o} which are $e_{r_o} = r \cdot \cdot \cdot c_r$ or $u_{r_o} = r \cdot \cdot \cdot i_r$. They are fixed properties of *r*. But...

THOROUGH RE-DO 3/13/2022

There does exists ambiguity in the final choice of w in $c_r \cdot w \equiv c_r$ or $i_r \cdot w \equiv i_r$ where the number of alternatives equals the integer value of c_r or i_r . This translates into ambiguity in the unit factors of i_r , and it might translate to ambiguity in final quotients q:

Definition: $q \equiv_{(i;u)} \frac{n}{d}$ is defined by first (i;u)-factoring numerator and denominator as $n \equiv i_n \cdot u_n$ and $d \equiv i_d \cdot u_d$, then unit-dividing to get $q_u \equiv \frac{u_n}{u_d} \equiv u_n \cdot u_d^{-1}$ and euclidean-dividing i_n by i_d to get $q_i = i_n \cdot \div \cdot i_d$, then multiplying q_u by q_i to conclude with $q \equiv_{(i;u)} q_u \cdot q_i$.

Lemma: If integer *i* is a euclidean divisor of integer *j*, and *w* is any unit solution of $w \cdot i \equiv i$, then: $w \cdot i \equiv i$, $w \cdot j \equiv j$, $w^{-1} \cdot i \equiv i$, and $w^{-1} \cdot j \equiv j$ are all true. Proof: Since *i*.|. *j* we can let integer $k = j \div i \text{ so } j = i \cdot k$. Then $w \cdot j \equiv w \cdot i \cdot k \equiv i \cdot k \equiv j$ so $w \cdot j \equiv j$. Also $w^{-1} \cdot i \equiv w^{-1} \cdot (w \cdot i) \equiv \cdot (w^{-1} \cdot w) \cdot i \equiv \omega_w \cdot i$ so $w^{-1} \cdot i \equiv \omega_w \cdot (w \cdot i) \equiv (\omega_w \cdot w) \cdot i \equiv w \cdot i \equiv i$ so $w^{-1} \cdot i \equiv i$. Proof that $w^{-1} \cdot j \equiv j$ proceeds similarly from . QED • The reason the Lemma matters is that it explains why the factorization-style of modal division yields unique results: If denominator *d* divides numerator *n* then i_d divides i_n so the numerator *n* has the same aspects of *d* that make *d* transparent to the solutions *w* of $w \cdot d \equiv d$.