
The modal integer factor of residue r (mod m)
The i of (i;u)-factorization

This algorithm is based on what I judge to be my nicest piece of tight modular reasoning in the year 2019.
It starts with the residue r of interest and teases out its modal integer factor .
Underlying the method is the idea of the prime factorizations of m, r, and i — m is a product of prime
powers , r of corresponding prime power . If j ≥ k then is part of the modal unit of r and is to not to
remain a factor of i, otherwise j < k and is a modal integer and should remain a factor of i.
The algorithm
c1 ← gcd(r , m) // c1 is the center of the cluster C obtained by factoring out all the euler units
 // and clipping the larger exponents of r to their values in m.
c2 ← gcd(, m) // c2 is the center of the cluster one level up from C .

The intended result i of this algorithm is that it should have the same modal integers as c1 but it should have
none of the modal units that remain in c1.
i ← c2/c1 // This first step towards i makes it a modal integer (by cancelling out the non-euler
 // modal unit factors) but the individual prime powers may have exponents smaller
 // than present in the original r.
The algorithm concludes with a loop to repeatedly boost the exponents of the modal integers until they
reach or exceed the values they have in r, while using gcd(•, r) to clip the values back to their values in r
when they get oversize.
repeat {
 ←

 ← gcd(, r) // note, clipping against r now instead of against m.
 } while (≠ i) // repeat until stops changing
 is now the modal integer factor of the original residue r.

If r is a pure modal integer then its modal unit factor is an euler but, in any case, the base unit factor is
obtained by euclidean division as
 .÷.
This “base” is only one of the number n = r (int) alternative values the modal unit factor u of r (mod m) can
assume. The complete set containing n values is expressed by
 where .÷. n and n = .÷.

using the abbreviation for the set { for } ▣
In my iOS app Frrraction this algorithm is implemented as { hp(MichiInt) } and is built into Frrraction’s
division operation when Frrraction is in MPR-Residue Mode.

i

pk p j p j

p j

r

c2
1 r

io i

i i2
o

io io
i

uo

uo ← r i

u ∈ uoΔδ δ = m |C1 | |Cr |
uoΔδ uo + j ⋅ δ j = 0,1,2,⋯, n − 1

If Frrraction’s option switch is off then the / operation to divide numerator by denominator just shows the
modular quotient, but if the switch is on then various properties of the denominator residue are also
available: i-factor int_d, u-factor unit_d, inv_unit_d, omega_unit_d, all (c;e)-quotients, and all (i;u)-
quotients.
Example (i;u) factorizations

 r type r center of r center of r2 i = #of (i;u) q’s ir ur

euler unit
43 1 1 1 1

1 43

mixed i·u

68 4 8 2 2

4 4

4 17

modal unit
56 8 8 1 1

1 56

mixed i·u
48 24 72 3 3

3 16

mixed i·u
54 18 36 2 2

2 27

modal unit
45 9 9 1 1

1 45

