The modal integer factor of residue r (mod m)
The i of (i;u)-factorization
This algorithm is based on what I judge to be my nicest piece of tight modular reasoning in the year 2019.
It starts with the residue 7 of interest and teases out its modal integer factor i .

Underlying the method is the idea of the prime factorizations of m, r, and i — m is a product of prime
powers pX, r of corresponding prime power p/. Ifj > k then p/ is part of the modal unit of r and is to not to
remain a factor of i, otherwise j < k and p’ is a modal integer and should remain a factor of i.

The algorithm

c1 < ged(r, m) // c1is the center of the cluster C, obtained by factoring out all the euler units
// and clipping the larger exponents of  to their values in m.

c2 «— ged( 012 , m) // c2 1s the center of the cluster one level up from C,..

The intended result i of this algorithm is that it should have the same modal integers as ¢ but it should have
none of the modal units that remain in c1.

i < C2/c1 /] This first step towards i makes it a modal integer (by cancelling out the non-euler
// modal unit factors) but the individual prime powers may have exponents smaller
// than present in the original r.

The algorithm concludes with a loop to repeatedly boost the exponents of the modal integers until they
reach or exceed the values they have in 7, while using ged( °, 7) to clip the values back to their values in
when they get oversize.

repeat {

I, <1

[« ged( ig ,7) // note, clipping against 7 now instead of against m.
} while (i,#1i) //repeat until i, stops changing
I 1s now the modal integer factor of the original residue 7.

If r 1s a pure modal integer then its modal unit factor is an euler but, in any case, the base unit factor u,, is
obtained by euclidean division as

U, <—r.=.1I
This “base” is only one of the number n = r (int) alternative values the modal unit factor u# of  (mod m) can
assume. The complete set containing 7 values is expressed by

u € u,Aé whered =m.+.nandn=|C;|.~ |C,|
using the abbreviation u,A§ for the set { u, +j - 6 forj = 0,1,2,---,n— 1} W

In my 10S app Frrraction this algorithm is implemented as { hp( Michilnt ) } and is built into Frrraction’s
division operation when Frrraction is in MPR-Residue Mode.



If Frrraction’s option switch is off then the / operation to divide numerator by denominator just shows the
modular quotient, but if the switch is on then various properties of the denominator residue are also
available: i-factor int_d, u-factor unit_d, inv_unit_d, omega unit _d, all (c;e)-quotients, and all (i;u)-
quotients.

Example (i;u) factorizations

r type r center of r center of r2 i = #of (i;u) g’s i ur
43 1 1 1 1
euler unit
1 43
68 4 8 2 2
mixed i-u 4 4
4 17
56 8 8 1 1
modal unit
1 56
48 24 72 3 3
mixed i-u
3 16
54 18 36 2 2
mixed i-u
2 27
45 9 9 1 1
modal unit
1 45




