The modal integer factor of residue *r* (mod *m*) The *i* of (i;u)-factorization

This algorithm is based on what I judge to be my nicest piece of tight modular reasoning in the year 2019. It starts with the residue r of interest and teases out its modal integer factor i.

Underlying the method is the idea of the **prime factorizations** of *m*, *r*, and *i* — *m* is a product of prime powers p^k , *r* of corresponding prime power p^j . If $j \ge k$ then p^j is part of the modal unit of *r* and is to not to remain a factor of *i*, otherwise j < k and p^j is a modal integer and should remain a factor of *i*.

The algorithm

 $c_1 \leftarrow \text{gcd}(r, m) // c_1$ is the center of the cluster C_r obtained by factoring out all the euler units // and clipping the larger exponents of r to their values in m.

 $c_2 \leftarrow \text{gcd}(c_1^2, m) // c_2$ is the center of the cluster one level up from C_r .

The intended result *i* of this algorithm is that it should have the same modal integers as c_1 but it should have none of the modal units that remain in c_1 .

 $i \leftarrow c_2/c_1$ // This first step towards *i* makes it a modal integer (by cancelling out the non-euler // modal unit factors) but the individual prime powers may have exponents smaller // than present in the original *r*.

The algorithm concludes with a loop to repeatedly boost the exponents of the modal integers until they reach or exceed the values they have in r, while using gcd(\cdot , r) to clip the values back to their values in r when they get oversize.

repeat {

 $i_o \leftarrow i$

 $i \leftarrow \text{gcd}(i_o^2, r)$ // note, clipping against r now instead of against m.

} while ($i_o \neq i$) // repeat until i_o stops changing

i is now the modal integer factor of the original residue *r*.

If *r* is a pure modal integer then its modal unit factor is an euler but, in any case, the base unit factor u_o is obtained by euclidean division as

 $u_o \leftarrow r \cdot \dot{\tau} \cdot i$

This "base" is only one of the number n = r (int) alternative values the modal unit factor u of $r \pmod{m}$ can assume. The complete set containing n values is expressed by

 $u \in u_o \Delta \delta$ where $\delta = m \div n$ and $n = |C_1| \div |C_r|$

using the abbreviation $u_o \Delta \delta$ for the set { $u_o + j \cdot \delta$ for $j = 0, 1, 2, \dots, n-1$ }

In my iOS app *Frrraction* this algorithm is implemented as { hp(MichiInt) } and is built into *Frrraction*'s division operation when *Frrraction* is in MPR-Residue Mode.

If *Frrraction*'s option switch is off then the / operation to divide numerator by denominator just shows the modular quotient, but if the switch is on then various properties of the denominator residue are also available: i-factor int_d, u-factor unit_d, inv_unit_d, omega_unit_d, all (c;e)-quotients, and all (i;u)-quotients.

r type	r	center of r	center of r ²	i = #of (i;u) q's	İr	ur
euler unit	43	1	1	1	1	
				1		43
mixed i∙u	68	4	8	2	2	
				4	4	
				4		17
modal unit	56	8	8	1	1	
				1		56
mixed i∙u	48	24	72	3	3	
				3		16
mixed i∙u	54	18	36	2	2	
				2		27
modal unit	45	9	9	1	1	
				1		45

Example (i;u) factorizations